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Mathematics Extension 1

General Instructions

»  Working time — 2 Hours

= Reading time — 5 Minutes

»  Write using black or blue pen

x  Board approved calculators may
be used. '

»  All necessary working should be
shown in every question if full marks
are to be awarded.

»  Marks may not be awarded for messy or §
badly arranged work. :

» Hand in your answer booklets in 4
sections. Section A (Questions 1 and 2),

“Section B (Questions 3 and 4), Section
C (Questions 5 and 6) and Section D
(Question 7).

Total Marks — 84

» Attempt Questions 1 — 7.

»  All QUESTIONS are of equal
value.

Examiner: K. Boros -

This is an assessment task only and does not necessarily reflect the content or format of the Higher School
———Certificate:— - .
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Section A — Start a new booklet

Question 1. (12 marks)

a)

box

Q) Evaluate J > 1dx leaving your answer in exact form.
o X* +

——dx leaving your answer in exact form.

243
(i) Evaluate j
X +4

-2

Find the gradient of the tangent to the curve y =tan™(sinx) at x=0.

Solve for x, L <3.
Xx+1
Give the general solution of the equation, cos(0+£j =i.
4) 2

If f(x)=8x’, then find the inverse function f *(x).

Question 2. (12 marks)

a)

b)

Find the co-ordinates of the point P that divides the interval A(-4,-6) and
B(6,—1) externally in the ratio 3:1.
Q) Sketch the graph of y =[2x—4].

(i) Using your graph, or otherwise, solve the inequation | 2x—4|> X.
. . 3
Use the substitution u =1+ x to evaluate, I_l X~+/1+ X.0X.

Solve forn, 2x"C, =5x"C,.
What is the least distance between the circle x> + y*+2x+4y =1 and the line

3x+4y =67 (Leave your answer in exact form.)

End of Section A
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Section B — Start a new booklet

Question 3. (12 marks)

a)

b)

d)

If the roots of the equation, x* —2x*-5x+1=0, are t,t,,t,,t,,

4
find D" (tt;t,)™", suchthat i= j=k.
1

State the domain and range of the function y = 2sin™* (gj :

Hence sketch the curve.

A bowl of water heated to 100°C is placed in a coolroom where the

temperature is maintained at —5°C . After t minutes, the temperature T°C of

the water is changing so that %—-It- =-k (T +5) :

(i)

(i)

(i)

Prove that T = Ae ™ —5 satisfies this equation and find the value
of A.

After 20 minutes, the temperature of the water has fallen to 40°C.
How long, to the nearest minute, will the water need to be in the
coolroom before ice begins to form, (i.e. the temperature falls to
0°C).

Show that the equation In x+ x> —4x =0 has a root lying between
x=3 and x=4.

By taking x =4 as a first approximation, use one application of
Newton’s Method to obtain another approximation for the root, to
2 decimal places. Is this newer approximation a better one?

Explain.
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Question 4. (12 marks) Marks

a)  The points P(2ap,ap’) and Q(2aq,aq”) lie on the parabola x* = 4ay. Itis

given that the chord PQ has equation y = (%) X—ap(q .

Q) Show that the gradient of the tangent at P is p. 1
(i) Prove that if PQ passes through the focus, then the tangent at P is
parallel to the normal at Q. 2
b) A committee of five is to be formed from 4 Liberal senators, 3 Labor senators
and 2 Democrat senators.
Q) How many different committees can be formed that have 3
Liberals, 1 Labor and 1 Democrat? 1

(i) If the committee is to be chosen at random, what is the probability

that there will be a Liberal majority in the committee? 2
c) 0] Express 7cosé—sin @ in the form Rcos(9+a), where R>0 and
0" <a<90. 2

(i) Hence solve 7cos@—sin@ =5 for 0° <6 <360°, giving your
answer to the nearest degree. 2
d) Find the values of the constants a and b if x*—2x—3 is a factor of the
polynomial P(x)=x’-3x*+ax+b. 2

End of Section B
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Section C — Start a new booklet Marks

Question 5. (12 marks)

A soccer player A is x metres from a goal line of a soccer field. He takes a
shot at the goal BC, with the ball not leaving the ground.
Q) Show that the angle @ within which he must shoot is given by

0= tan‘l( j when he is 10 metres to one side of the near

180+ x*

goal post and 18 metres to the same side of the far post. 2
(i) Find the value of x which makes this angle a maximum. (Leave
your answer in exact form). 2

b) A particle moves in a straight line such that its velocity V m/s is given by

V =2+/2x -1 when it is x metres from the origin. If x :% when t =0 find:

Q) the acceleration. 1

(i) anexpression for x in terms of t. 2

Find the volume of the solid obtained by rotating y =sin™ x about the y-axis

between y = —% and y= % Answer in exact form. 3

d) The perimeter of a circle is increasing at 3 cm/s. Leaving your answer in
terms of , find the rate at which the area is increasing when the perimeter is
Im. 2
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Question 6. (12 marks) Marks
a)
Consider the following three expressions involving n, where n is a positive
integer: 5"+3,7"+5,5"+7
Q) By substituting values of n, show that 7" +5 is the only one of
these expressions which could be divisible by 6 for all positive
integers n. 1
(i) Use mathematical induction to show that the expression 7" +5 is
in fact divisible by 6 for all positive integers n. 2
b)
Not to scale
X
—
U 0] P w
« a pb4t— b —»

In the diagram UXW is a semi-circle with O as a midpoint of diameter UW.
The point P lies on UW and XP is perpendicular to UW. The length of
UP =aunits and PW =D units are shown.

Q) Explain why OX :aTer.

(i)  Show that LIUXP ||| XwP .

(iiiy  Deduce that XP =+/ab . 1
(iv) By using the diagram show that a%b >./ab . 1

c) The displacement x metres of a particle from the origin is given by

X= 5005(3'[ —%j , Where t is the time lapsed in seconds.

Q) Show that X =-9x. 1
(i) Find the period of the motion 1
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Suppose that (5+2x)" = D ax.

Q) Use the binomial theorem to write the expression for a, .

(i) Show that Jea - 24=2K
a, 5k+5

End of Section C
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Section D — Start a new booklet
Question 7. (12 marks)

A projectile is fired from the origin with a velocity V and an angle of

elevation @, where 8 = 90°. You may assume that x =Vtcosé and
y= —% gt® +Vtsin @, where x and y are the horizontal and vertical

displacements of the projectile in metres from O at time t seconds after firing,
and g is the acceleration due to gravity.

Q) Show that the Cartesian equation of the flight of the projectile is:

9 .
2V2cos? 6

(i) Suppose the projectile is fired up a plane inclined at £ to the

y=Xxtand -

horizontal so that 0° < £ < @. If the projectile strikes the plane at
P(h,k), show that:
tan 6 —tan )2V * cos” 0
g
(iii)  Hence, show that the range OP of the projectile can be given by
_ V*sin(0- f)cosd
gcos’

h=<

OoP
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(iv)

(v)

Given the fact that 2sin(x— B)cosx =sin(2x—)—sin 3. Show

that the maximum value of the range of OP is given by:

V&
If the angle of inclination of the plane is 14°, at what angle to the
horizontal should the projectile be fired in order to attain
maximum range?

End of Examination
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STANDARD INTEGRALS

Jx"dx=—1-x”“, n¥-1; x=0,ifn<0
n+l1

1

J—dx:lnx,x>0
!
o ] &
e“dx=—e",a#0
a

: 1.
cosaxdx=—sinax, a#0
a

, 1
sinaxdx=——cosax, a# 0
a N

1
sec’ ax dx=—tan ax,
a

1
secaxtanaxdx=—secax, a#0
a

,{kﬁk_ﬂg_ﬁ%,

- 1 > dx=ltan"li, a#0

Ja +x7 a a
(
1

2 2
JNa —Xx
\/xz—az

J ————r.__x21+a2 a’x=ln(>;+\/x2 +a2)

NOTE: Inx =log,x, x>0

g X
— dx=sin” =, a>0, —a<x<a

a
[
—l—dlen(er\/xz—az), x>a>0
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QUESTION 7

. X
)=
ycosé
- ax’ vx sin
2% cos? 3 veosd
2
X
y=xtang- ——z‘g———z—
2v° cos” &
(ii)

AtP,y=k=htan% x=nh
2

gh .
htan f = htan 9 ——=—— from (i
p 2v% cos® & om (1)

gh’
m = h(tanxg—tanﬂ)
(tan 9 —tan f)2v* cos® 9

g

h=
(iii)
OP = h

cos 3
tan $—t 2v* cos’ 9
_ (tan $—tan B)2v’ cos Cfrom (if)]
gcospf é

[sm&‘ _sinf j%’z cos’ I
_\cosd cosp

gcosf
_ (sin$cos B —sin f cos:)2v* cos §-
gcos’
_ 2v"sin(9- f)cos 9
gcos’ B

(iv)

Op [sm (29- ﬁ)z— sin ﬁ]v (given)
gecos” B

dor)y 2

(d5) ~geor' p [2cos(28- )]

OP max/min cos(29-f)=0

29— =90
0
8=9O + 4
2
2
OP" = 4"2 x—2sin (29— f8)
gcos” [
always < 0 as (29— ) <180°

90° + 3

-.max val OP when 9 =

V2 (sin 90° —sin S )
g(i-sin” §)
_V’(1-sinf)
g(1-sin® )

2
v

" g(l+sin f)

Max val. OP =

™)

90°+5 [from (iv)]

max val OP when &=

90° +14°
2
9=52°

9=
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